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Abstract
We show theoretically that non-relativistic nearly-free electrons in solids should
experience a trembling motion (Zitterbewegung, ZB) in the absence of external
fields, similarly to relativistic electrons in a vacuum. The ZB is directly related
to the influence of the periodic potential on the free electron motion. The
frequency of the ZB isω ≈ Eg/h̄, where Eg is the energy gap. The amplitude of
the ZB is determined by the strength of periodic potential and the lattice period,
and it can be of the order of nanometres. We show that the amplitude of the ZB
does not depend much on the width of the wavepacket representing an electron
in real space. An analogue of the Foldy–Wouthuysen transformation, known
from relativistic quantum mechanics, is introduced in order to decouple electron
states in various bands. We demonstrate that after the bands are decoupled
electrons should be treated as particles of a finite size. In contrast to nearly-free
electrons we consider a two-band model of tightly-bound electrons. We show
that in this case also the electrons should experience the trembling motion. It
is concluded that the phenomenon of ZB of electrons in crystalline solids is the
rule rather than the exception.

1. Introduction

Zitterbewegung (a trembling motion) was theoretically devised by Schrödinger [1] after Dirac
had proposed his equation describing free relativistic electrons in a vacuum. Schrödinger
showed that, due to a non-commutativity of the quantum velocity v̂ = ∂ ĤD/∂p with the Dirac
Hamiltonian ĤD, relativistic electrons experience Zitterbewegung (ZB) even in the absence
of external fields. The frequency of the ZB is about ω = 2m0c2/h̄ and its amplitude is
about the Compton wavelength λc = h̄/m0c ≈ 3.86 × 10−3 Å. It was later understood that
the phenomenon of the ZB is due to the interference of electron states with positive electron
energies (E > m0c2) and negative energies (E < m0c2) (see [2–4]). In other words, ZB results
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from the structure of the Dirac Hamiltonian, which contains both positive and negative electron
energies, and it is a purely quantum effect as it goes beyond Newton’s first law.

An important step in the understanding of ZB was made by Foldy and Wouthuysen [5],
(see also [6, 7]), who showed that in the absence of external fields there exists a unitary
transformation that transforms the Dirac Hamiltonian into a Hamiltonian in which positive
and negative electron energies are decoupled. While solutions of the Dirac equation are four-
component functions, the transformed states for the positive energies have only two upper non-
vanishing components and those for the negative energies have only two lower non-vanishing
components. Now the above-mentioned interference between the positive and negative energy
states cannot occur and there is no ZB. Instead, in the new representation the electron is not
a point-like particle but acquires a ‘quantum radius’ of the size λc. The interpretation of the
two pictures is not quite clear at present (see [8–14]). To our knowledge, ZB has never been
directly observed for free electrons. However, in the presence of the Coulomb potential the ZB
is manifested in the appearance of the so-called Darwin term [2–4].

It was pointed out some time ago that Zitterbewegung may also occur in non-relativistic
two-band systems in solids [15]. It was shown that, similarly to the relativistic case in a vacuum
discussed above, the consequence of the ZB is that it is impossible to localize the electron
better than to a certain finite volume. Recently, an analogy between the Dirac description
of electrons in a vacuum and the coupled-band k · p formalism for electrons in narrow-gap
semiconductors (NGS) and carbon nanotubes (CNT) was used to demonstrate that ZB should
occur in these systems [16, 17]. It was shown that, in agreement with the ‘semi-relativistic’
analogy [18, 19], the ZB frequency is always ω ≈ Eg/h̄, where Eg is the energy gap between
the conduction and valence bands. The amplitude of Zitterbewegung in NGS and CNT was
estimated to be λZ = h̄/m∗

0u, where m∗
0 is the effective electron mass and u ≈ 108 cm s−1

is the maximum electron velocity in the system. The ZB length in NGS and CNT turns out
be 10–100 Å, i.e. 104–105 times larger than in a vacuum. A much lower ZB frequency and
its much higher amplitude, as compared to a vacuum, should make ZB much more readily
observable in semiconductors. Zitterbewegung was also recently proposed in two-dimensional
systems exhibiting spin splitting due to structure and bulk inversion asymmetry [20], and in
2D graphite [21]. A phenomenon similar to the ZB was proposed for electrons in degenerate
valence bands in the presence of an external electric field [22]. Very recently, a unified
description of the ZB of electrons in different solid state systems was attempted [23].

In view of this recently published work we want to investigate the question of whether
the phenomenon of ZB in solids is the rule rather than the exception or vice versa. To this
end we consider two limiting models for electrons in solids: nearly-free electrons, for which
the periodic potential of the lattice may be treated as a weak perturbation, and tightly-bound
electrons, for which the periodic potential may not be treated as a perturbation. Since we are
interested in the general properties of ZB, we do not insist on details of the band models in
question but rather concentrate on essential features that result in this phenomenon. Although
we deal with non-relativistic electrons in solids, we use methods of relativistic quantum
mechanics to investigate an alternative picture in which the trembling motion is replaced
by a kind of electron ‘smearing’ in real space. The reason that the somewhat mysterious
phenomenon of the ZB of electrons in a vacuum has never been observed seems to be related
to its very high frequency and very small amplitude. The corresponding phenomenon in
solids would have a much lower frequency and a much larger amplitude. The underlying
hope motivating our work is that a more thorough theoretical understanding of the trembling
motion will lead to an experimental detection of the phenomenon. This would not only deepen
our knowledge of electrons in solids but also represent a great success for the relativistic
quantum theory.
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Our paper is organized in the following way. In section 2 we give the basis of the
nearly-free electron formalism. Section 3 treats the resulting ZB using Schrödinger’s method
of the equation of motion. In section 4 a more realistic description of the ZB is presented
in which electrons are treated as wavepackets. In section 5 we use the Foldy–Wouthuysen
transformation known from the relativistic quantum mechanics to obtain an alternative electron
picture. Section 6 treats the ZB in case of tightly-bound electrons. In section 7 we discuss the
obtained results and compare them with previous work. The paper is concluded by a summary.

2. Nearly-free electrons

The beginning of this section is standard, but it is needed for further developments. We consider
an electron in the presence of an external periodic potential V (r) = V (r + ra), where ra

is a translation vector of the lattice. The periodic potential V (r) may be expressed by the
Fourier series V (r) = ∑

l Vl exp(ilr), where l are reciprocal lattice vectors and Vl are Fourier
components of the periodic potential. For a real potential there is V ∗

l = V−l. The wavefunction
of an electron has the Bloch form

�k(r) = 1√
V

eikr
∑

l

ale
ilr, (1)

where V is the crystal volume and k is the wavevector. Inserting the wavefunction �k(r)

into the Schrödinger equation one obtains the well-known equation for the energy E and the
coefficients al

(

E − h̄2

2m0
(k + l)2

)

al =
∑

g

Vgal−g, (2)

where m0 is the free electron mass and g are reciprocal lattice vectors.
In the absence of a periodic potential there is al = 0, a0 = 1, and E = h̄2k2/2m0 ≡ εk is

the free electron energy. For a weak periodic potential we may treat V (r) as a perturbation and
approximate al for l �= 0 by retaining only linear terms in Vl. We then obtain

al = Vl

εk − εk+l

(3)

and a0 = 1. The perturbed energy is

E = εk +
∑

l�=0

|Vl|2
εk − εk+l

. (4)

For weak potentials the correction to the free electron energy is small. This, however, is true
only if εk �= εk+l. For k and l = q such that εk = εk+q we expect aq to be comparable to a0

and the potential may not be treated as a weak perturbation. The well-known way to treat this
problem is to use the approximation for nearly degenerate levels in which we neglect in (2) all
al except a0 and aq. We then find

(E − εk)a0 = V−qaq

(E − εk+q)aq = Vqa0.
(5)

Equations (5) are equivalent to dealing with the Hamiltonian

Ĥ =
(
εk+q Vq

V ∗
q εk

)

, (6)

which is valid for k such that εk+q ≈ εk . Hamiltonian (6) has two eigen-energies

E1(2) = εk+q + εk

2
±
√

|Vq|2 +
(
εk+q − εk

2

)2

, (7)

3
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Figure 1. Energy versus kz for free and nearly-free electrons (schematically). The dashed line
shows E = h̄2k2

z /2m0 dispersion for free electrons plotted in the first Brillouin zone. The solid line
indicates E(kz) dispersion for the free motion weakly perturbed by a periodic potential.

and two eigen-states

|1〉 = 1

N

(
E� +�

V ∗
q

)

(8a)

|2〉 = 1

N

( −Vq

E� +�

)

, (8b)

where

� = 1

2
(εk+q − εk) = h̄2

2m0

(

kq + q2

2

)

, (9)

E� =
√

|Vq|2 +�2 (10)

and N = √
2E�(E� +�).

Taking only one vector q in the reciprocal lattice we are in reality considering a one-
dimensional problem. To concentrate our attention we consider the symmetry of a simple
cubic lattice. For the two points in the reciprocal lattice (see (5)) it is convenient to take l = 0
and l = q = [0, 0,−2π/a], where a is the lattice period. Then the two parabolas εk and εk+q

in (4) cross at k = [0, 0, π/a], which determines the Brillouin zone boundary on the positive
kz axis (see figure 1). The energy gap at the zone boundary is Eg = 2|Vq|. The energies �
and E� depend in reality only on kz . When using the nearly-degenerate perturbation theory
based on (6) we should keep in mind that this procedure is only valid near the degeneracy point
kz = π/a, but it progressively ceases to work as kz is lowered toward zero.

We note that E� of (10) is analogous to the relativistic dispersion relation E(p) =
[(m0c2)2 + c2 p2]1/2. Thus |Vq|2 = (Eg/2)2 corresponds to (m0c2)2, while �2, which is
quadratic in momentum, corresponds to c2 p2.

It is convenient to split the Hamiltonian (6) into two parts:

Ĥ = Ĥ� + Ĥk, (11)

4
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where

Ĥ� =
(
� Vq

V ∗
q −�

)

(12)

and

Ĥk = 1
2 (εk+q + εk)

(
1 0
0 1

)

. (13)

In terms of the Pauli matrices the Hamiltonian (12) reads

Ĥ� = �σ̂z + Re(Vq)σ̂x − Im(Vq)σ̂y . (14)

Hamiltonian Ĥ� has a form reminiscent of the Dirac Hamiltonian for relativistic electrons
in a vacuum, while the part Ĥk is proportional to the unity matrix and can be treated as a
c-number. The decomposition (11) is directly related to the two terms in the energy (7).

The quantum velocity is v̂ = ∂ Ĥ/∂(h̄k). We calculate

v̂ = v̂� + v̂k = u�σ̂z + uk1, (15)

where u� = ∂�/∂(h̄k) = (h̄/m0)q/2 and uk = (h̄/m0)(k + q/2). It follows from (15) that
the quantum velocity v̂ is an operator, not a number. Since � depends only on kz , the only
non-vanishing component of v̂� is v̂�z . In the following we drop the index z.

Eigen-values of the quantum velocity v̂� are ∓(h̄/m0)(π/a). This seems paradoxical, as
it means that the quantum velocity takes only two constant (and extreme) values. A similar
result is obtained for the Dirac equation describing relativistic electrons in a vacuum, for which
the eigen-values of the quantum velocity are ±c. It is known that this feature is related to the
ZB phenomenon.

3. Zitterbewegung

It can easily be verified that the quantum velocity (15) does not commute with the
Hamiltonian (6). This means that dv̂/dt does not vanish. Schrödinger’s original derivation is
based on the quantum equation of motion (see also [12]). Let us calculate the time dependence
of v̂. We have

ih̄
dv̂

dt
= [v̂�, Ĥ ] + [v̂k, Ĥ ]. (16)

Since Ĥk and v̂k are unity matrices, they commute with any number matrices. Therefore
dv̂k/dt = 1/(ih̄)[v̂k, Ĥ ] = 0, so that v̂k(t) = vk0. Thus

ih̄
dv̂�
dt

= [v̂�, Ĥ�] = 2v̂� Ĥ� − {v̂�, Ĥ�}, (17)

where the anti-commutator of {v̂�, Ĥ�} = 2u��. Hence

ih̄
dv̂�
dt

= 2v̂� Ĥ� − 2u��. (18)

Let us calculate the second time derivative of v̂�

ih̄
d2v̂�

dt2
=
[

dv̂�
dt
, Ĥ�

]

= 1

ih̄
[2v̂� Ĥ� − 2u��, Ĥ�]

= 2

ih̄
[v̂�, Ĥ�]Ĥ� = 2

dv̂�
dt

Ĥ�. (19)

5
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This represents a differential equation for dv̂�/dt . Its solution is
dv̂�
dt

= Â0 exp(−2iĤ�t/h̄), (20)

where Â0 is a constant operator. Inserting (20) into (18)

ih̄ Â0 exp(−2iĤ�t/h̄) = 2v̂� Ĥ� − 2u��. (21)

Solving (21) for v̂� we obtain

v̂�(t) = 1
2 ih̄ Â0 exp(−2iĤ�t/h̄)Ĥ −1

� + u��Ĥ −1
� . (22)

Integrating (22) with respect to time and adding the term due to the z component of v̂k we
finally find

ẑ(t) = z0 + vkz 0t + u��Ĥ −1
� t − 1

4 h̄2 Â0(exp(−2iĤ�t/h̄)− 1)Ĥ −2
� . (23)

In order to find Â0 we use (21) for t = 0

Â0 = 1

ih̄

(
2v̂� Ĥ� − 2u��

)
= 2u�

ih̄

(
0 Vq

−V ∗
q 0

)

. (24)

At t = 0 there is ẑ(0) = z0. Similarly, it follows from (22) and (24) that v̂�(0) is equal to the
z component of the initial velocity v̂� from (15).

In order to interpret the result (23) we observe that the eigen-energy of Ĥ� is ±E�, where
E� is given by (10). There is Ĥ −1

� = Ĥ�/E�2 and Ĥ −2
� = 1/E�2. The exponential term

in (23) is (see the appendix)

exp

(
−2iĤ�t

h̄

)

= cos

(
2E�t

h̄

)

− i
Ĥ�

E�
sin

(
2E�t

h̄

)

. (25)

The first three terms in (23) describe the classical motion. The last term, according to (25),
describes oscillations with the frequency ω = 2E�/h̄. This frequency corresponds directly to
the interband energy 2E�, as seen in figure 1.

Since the Hamiltonian Ĥ� is a matrix, the position ẑ(t) is also a matrix. We have explicitly

ẑ(t) =
(

z11(t) z12(t)
z21(t) z22(t)

)

, (26)

where

ẑ11(t) = h̄u�|Vq|2
2E�3 sin

(
2E�t

h̄

)

+ u��2t

E�2 + vkz 0t + z0. (27)

The component ẑ22(t) has negative signs of the first two terms. Further

ẑ21(t) = − h̄u�V ∗
q

2E�
2

{

i

[

cos

(
2E�t

h̄

)

− 1

]

+ �

E�
sin

(
2E�t

h̄

)}

+ u��V ∗
q t

E�
2 , (28)

where z0 = z(0) and ẑ12(t) = ẑ21(t)∗.
The amplitude of the oscillating term in (27) is h̄u�|Vq|2/2E�3 ≈ π h̄2/(2m0a|Vq|) =

λZ/2, where the ZB length is defined as

λZ = π h̄2

m0a|Vq| . (29)

This corresponds to the Compton wavelength in relativistic quantum mechanics. Its numerical
estimation is given below.

In agreement with the history of the subject, as described in section 1, we can legitimately
call the above oscillations the ZB. We shall discuss the subject of the ZB more thoroughly
below. Here we emphasize how little we have assumed to obtain the trembling motion—we
have only perturbed the free electron motion by a periodic potential.

6
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Figure 2. Zitterbewegung oscillations of nearly-free electrons versus time, calculated for a very
narrow wavepacket centred at various kz0 values. The band parameters correspond to GaAs (see
text).

4. Wavepacket

Now we consider a more realistic picture describing an electron in terms of a wavepacket.
Taking, as before, q = [0, 0,−2π/a] and using the fact that � and E� depend only on kz , we
take a Gaussian packet in the form

ψ(z) = 1√
2π

d1/2

π1/4

∫ ∞

∞
exp

(

−1

2
d2(kz − kz0)

2

)

exp(ikzz) dkz

(
1
0

)

, (30)

where d determines the packet’s width and kz0 fixes its centre in kz space. Averaging the
oscillating part of the motion over the wavepacket we obtain from (26)

〈ψ(z)|ẑosc(t)|ψ(z)〉 = d√
π

∫ ∞

−∞
ẑosc

11 (t) exp(−d2(kz − kz0)
2) dkz, (31)

where ẑosc
11 (t) is given in (27).

To begin, let us take the packet to be a delta function in kz space centred at kz0. This
corresponds to a completely non-localized packet in real space. We can then take various kz0

values beginning with kz0 = π/a at the zone boundary. In figure 2 we show the calculated
ZB oscillations of z11(t) for different values of kz0. It can be seen that as kz0 diminishes from
π/a toward the zone centre, the amplitude of ZB quickly drops. This should not be surprising
since, as is well known (see figure 1), the effect of the periodic potential on the free electron
motion is the strongest at the zone boundary kz = π/a, where the minimum gap occurs. (We
do not consider here the gap at kz = 0 for the upper branch.) Figure 3 shows the amplitude
of the ZB for d = ∞ and d = 20r−1

B , as calculated from (31). The quantity rB = 0.53 Å
is the Bohr radius. For d = ∞ we deal in (30) and (31) with a delta function and the solid
line in figure 3 follows the dependence h̄u�|Vq|2/(2E�3) of (27). When the width of the
wavepacket increases (d decreases) the amplitude of the ZB for kz0 ≈ π/a diminishes and, as
kz0 is lowered, it becomes independent of the width. Since our model is not valid for kz0 near
zero, we are limited in our considerations to not too small d and kz0 values.

7
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Figure 3. Amplitude of the ZB of nearly-free electrons versus the packet centre kz0, calculated
for two widths of the wavepacket. The symbol rB denotes the Bohr radius. Material parameters
correspond to GaAs.

However, since the ZB amplitude diminishes so quickly with diminishing kz0, it is justified
to limit the considerations of ZB to the vicinity of the band extremes. It can be seen from
figure 2 that, with decreasing kz0, the frequency of ZB increases. This increase follows from
the behaviour of the gap 2E�, as illustrated in figure 1.

In order to calculate numerical values for the ZB we need to specify material parameters.
As an example we take Vq = Eg/2 = 0.76 eV and a = 5.6 Å, corresponding to GaAs. This
gives λZ = 5.6 Å. This value can be compared with λZ = 10–13 Å for GaAs, as obtained with
the use of k ·p theory for the fundamental gap in GaAs at k = 0 [16]. The above estimation of
λZ based on the simple model is better than one could expect. Clearly, if we take the Vq value
corresponding to Eg = 0.23 eV for InSb, λZ would be seven times larger.

Next we calculate an observable quantity, that is the electric current caused by ZB. It is
given by the velocity multiplied by the charge. The oscillatory part of the velocity is given by
the first term in (22). We average it using the wavefunction (30) which selects the component
v̂11(t)

v̂11(t) = u�|Vq|2
E2
�

cos

(
2E�t

h

)

+ u��2

E2
�

. (32)

The results for the velocity, computed with the Gaussian wavepacket (30), are plotted in
figure 4. They are quantitatively similar to those shown in figure 2, the ZB frequency is clearly
the same and the amplitude decreases with increasing kz0. The phase, however, is different and
the velocity v̂11(t) is not zero at t = 0 but is equal to u� from (15). Also, the velocity does not
oscillate around zero, it oscillates around the value v(0)11 resulting from the second term in (32).
For kz0 = π/a we can find v(0)11 analytically:

v
(0)
11 = u�{1 − √

πζ exp(ζ 2)[1 − erf(ζ )]}, (33)

where ζ = d/λZ and erf(x) is the error function. For narrow packets (large d) the shift v(0)11
tends to zero.

8
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Figure 4. Contribution of ZB to the velocity for nearly-free electrons versus time, calculated for
a very narrow wavepacket centred at various kz0 values. The band parameters correspond to GaAs
(see text).

5. Foldy–Wouthuysen transformation

As mentioned in section 1, Foldy and Wouthuysen [5] proposed a transformation which, in
the absence of external fields, transforms the Dirac Hamiltonian for relativistic electrons in
a vacuum into a form in which positive and negative electron energies are separated. It
was recently shown by Zawadzki [16, 17] that similar transformations exist for the k · p

Hamiltonians describing band structures in narrow gap semiconductors and carbon nanotubes.
Since the Hamiltonian Ĥ� of (12) also bears a similarity to the Dirac Hamiltonian, we can
expect that a similar transformation exists for nearly-free electrons as well. This is indeed the
case.

We define a unitary transformation

Û = E� + β̂ Ĥ�√
2E�(E� +�)

, (34)

where β̂ = ( 1 0
0 −1

)
. It is easy to verify that Û Û † = 1. Further

Û Ĥ�Û † = E�β̂ (35)

and obviously Û ĤkÛ † = Ĥk since Ĥk is proportional to the unity matrix (see (13)). Thus,
for the transformed Hamiltonian the eigen-energy problem factorizes into two independent
problems for positive and negative E� energies. This means that the wavefunction
corresponding to the positive energy has the lower component equal to zero while the
wavefunction for the negative energy has the upper component equal to zero. However, this
is also true for other wavefunctions in the transformed representation, as we show below.

We consider an arbitrary wavefunction �(z) in the two-component representation. It can
be expressed in general in the form

�(z) =
∫ ∞

−∞
u(k ′

z) exp(ik ′
zz) dk ′

z = �+(z)+�−(z), (36)

9
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where

�±(z) = 1

2

∫ ∞

−∞

(

1 ± Ĥ�

E�

)

u(k ′
z) exp(ik ′

zz) dk ′
z. (37)

Let us now transform the above functions using the Û operator: � ′±(z) = Û�±(z). After some
manipulations we obtain

� ′
±(z

′) = 1 ± β̂

2

∫ ∞

−∞

(
E�

2(E� +�)

)1/2
(

1 ± Ĥ�

E�

)

u(k ′
z) exp(ik ′

zz′) dk ′
z. (38)

The k ′
z-dependent function under the square root may be put under the integral sign, as

explained in [5].
The functions � ′±(z ′) have the above-mentioned property of having only the upper or the

lower non-vanishing components, which is guaranteed by the pre-factors (1 ± β̂). Using the
inverse Fourier transform

u(k ′
z) = 1

2π

∫ ∞

−∞
�(z′) exp(−ik ′

zz′) dz′, (39)

we have

� ′
±(z) =

∫ ∞

−∞
K±(z, z′)�(z′) dz′, (40)

where

K±(z, z′) = 1 ± β̂

2

1

2π

∫ ∞

−∞

(
E�

2(E� +�)

)1/2
(

1 ± Ĥ�

E�

)

exp(ik ′
z(z − z ′)) dk ′

z. (41)

The kernels K±(z, z′) are not point transformations. To illustrate this we will transform the
eigen-function of the position operator ẑ ′ in the old representation, i.e. the Dirac delta function
multiplied by a unit vector

�(z′) = δ(z′ − z0)

(
1
0

)

. (42)

The transformed functions are

� ′
+(z) = K+

11(z, z0)

(
1
0

)

(43)

and

� ′
−(z) = K−

21(z, z0)

(
0
1

)

, (44)

where

K+
11(z, z0) = 1

2π
√

2

∫ ∞

−∞

√

1 + �

E�
eik′

z (z−z0) dk ′
z (45)

and

K−
21(z, z0) = −Vq

2π
√

2

∫ ∞

−∞
eik′

z (z−z0)

√
E�(E� +�)

dk ′
z. (46)

It is seen explicitly that the transformed functions � ′+(z) and � ′−(z) have vanishing lower
or upper components, respectively. Both K+

11(z, z0) and K−
21(z, z0) are normalized to delta

functions. To demonstrate that the transformed functions are characterized by a certain width,

10
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we calculate their second moments M±
2 . Since K+

11(z, z0) = K+
11(ζ ), where ζ = z − z0, we

have

M+
2 =

∫ ∞

−∞
(K+

11(ζ ))
†ζ 2K+

11(ζ ) dζ

= 1

(2π)2

∫ ∫ ∫

e−ik′
z ζ

√

1 + �k′
z

E�k′
z

eik′′
z ζ

√

1 + �k′′
z

E�k′′
z

ζ 2 dζ dk ′
z dk ′′

z . (47)

In (47) we used subscripts k ′
z and k ′′

z to indicate the variables of the integration. Using relations
ζ = i(d/dk ′

z) exp(−ik ′
zζ ) and similarly for k ′′

z the triple integral is reduced to

M+
2 = 1

2π

∫ ∞

−∞

(
d

dk ′
z

√

1 + �k′
z

E�k′
z

)2

dk ′
z = 1

32
λZ , (48)

where λZ is defined in (29). The above result has been calculated directly using � and E�
from (9) and (10). Note that since K+

11(ζ ) has the dimension (m−1), the dimension of M+
2

is (m).
Similar calculations for the second moment of K−

21(ζ ) give M−
2 = λZ/32. Thus the

transformed functions for the upper and lower energies are characterized by the same widths,
as should be expected. We will discuss physical implications of the above calculations in
section 7.

When transforming various wavefunctions from the two-component representation to the
one-component representation with the use of (40), it is important to know more about the
kernels K±(z − z′), as given by (41). As an example we will calculate and plot K+

11(ζ ) given
by (45).

Because both � and E� are centred at k ′
z = −qz/2 = (π/a), it is convenient to change

the variables k ′
z → kz − qz/2. Then we obtain

K+
11(ζ ) = exp(−iqzζ/2)× K +

11(ζ ), (49)

where

K +
11(ζ ) = 1

2π
√

2

∫ ∞

−∞

√

1 + �0

E�0
exp(ikzζ ) dkz, (50)

�0 = h̄2

2m0
kzqz, (51)

and E�0 = √|Vq|2 + (�0)2. The quantities �0 and E�0 are centred at kz = 0. After the
change of variables, we singled out the rapidly oscillating part of K+

11(ζ ), which is related to
the position of band extremes in k space. The remaining part K +

11(ζ ) is a smoothly varying
function of ζ with a singularity at ζ = 0.

We consider the integrand in (50)

B(kz) = 1√
2

√

1 + �0

E�0
. (52)

For kz → ∞ the function B(kz) tends to unity as 1 − O(k2
z ), while for kz → −∞ it tends

to zero as O(kz). Therefore the integral (52) is poorly convergent. Nevertheless, we can
calculate it with the help of the Heaviside function �(kz), which has a similar behaviour to
the integrand (52) for kz → ±∞. We have

K +
11(ζ ) = 1

2π

(∫ ∞

−∞

[
B(kz)−�(kz)

]
exp(ikzζ ) dkz +

∫ ∞

−∞
�(kz) exp(ikzζ ) dkz

)

. (53)

11
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Figure 5. Real and imaginary parts of the kernel of Foldy–Wouthuysen transformation for nearly-
free electrons (the smooth component) versus ζ = z − z0. Material parameters correspond to GaAs.

The second integral is
∫∞
−∞�(kz) exp(ikzζ ) dkz = i/ζ + πδ(ζ ). Thus the real and imaginary

parts of K +
11(ζ ) are

Re[K +
11(ζ )] = 1

2π

∫ ∞

−∞

[
B(kz)−�(kz)

]
cos(kzζ ) dkz + 1

2
δ(ζ ) (54)

and

Im[K +
11(ζ )] = 1

2π

∫ ∞

−∞

[
B(kz)−�(kz)

]
sin(kzζ ) dkz + 1

2πζ
. (55)

The above integrations are carried out numerically. The results are plotted in figure 5. Both
Re[K +

11(ζ )] and Im[K +
11(ζ )] are singular at ζ = 0 and for large ζ they decay exponentially.

Since we are dealing with weakly convergent integrals it is of interest to verify the accuracy
of the above numerical calculations. To this end, we check two sum rules holding for K +

11(ζ )

defined in (50) (see [2]). The first rule is

S+
0 =

∫ ∞

−∞
K +

11(ζ ) dζ = 1√
2

√

1 + �0

E�0

∣
∣
∣
∣
∣
kz=0

= 1√
2
. (56)

Now we verify that the same result is obtained from the numerical calculations of integrals
in (54) and (55). Since the imaginary part of K +

11(ζ ) is an odd function of ζ , it gives no
contribution to S0. The numerical calculation of the real part of K +

11(ζ ) gives 1/
√

2 with an
accuracy of 10−3.

The second sum rule is related to the second moment of K +
11(ζ ). Calculations similar to

those presented above give

S+
2 =

∫ ∞

−∞
K +

11(ζ )ζ
2 dζ

= − 1√
2

d2

dk2
z

√

1 + �0

E�0

∣
∣
∣
∣
∣
kz=0

= 1√
2

(
λZ

2

)2

. (57)
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Taking into account the normalization (56) we obtain the extension of the K +
11 function to be

λZ/2, which is in exact analogy to the relativistic Dirac electrons [2] (see also [16]). Similar
results are obtained for the S−

0 and S−
2 integrals defined using the K −

21 function.
The Foldy–Wouthuysen transformation is not the only transformation which can decouple

positive and negative energies in the field-free case. In the relativistic quantum mechanics
described by the Dirac equation other transformations were devised (see for example Cini–
Touschek [24]). In a recent paper Mulligan [25] introduced still another transformation
separating the 4 × 4 Dirac equation into two 2 × 2 equations for the electron and anti-electron,
respectively. It is possible that an analogous transformation would be possible for the nearly-
free non-relativistic electrons considered above.

6. Tightly-bound electrons

In the preceding sections we considered the case of a weak periodic potential acting on free
electrons and we showed that this potential leads to the ZB. Now we consider the opposite
limit of a strong periodic potential.

An effective treatment of a strong periodic potential is the tight-binding method. We use
here as an example the so-called empirical tight binding method. In this model one takes
one s orbital per cation and three p orbitals per anion including nearest-neighbour and second
nearest-neighbour interactions. Spherical approximation is assumed, so all sp and p bands are
isotropic and their k-dependence is given by the �–X dispersion. The model was used for
calculating magnetic interactions in dilute magnetic semiconductors, approximating the band
structure of Cd1−x Mnx Te within the whole Brillouin zone [26]. This scheme provides a good
semi-quantitative description of both upper valence bands as well as the lowest conduction
band. In the basis xa, ya, za, sc, (c, cation; a, anion) the Hamiltonian is

Ĥ =

⎛

⎜
⎜
⎝

t (2)k 0 0 iVk

0 t (3)k 0 0
0 0 t (3)k 0

−iVk 0 0 t (1)k

⎞

⎟
⎟
⎠ , (58)

where

t (1)k = εc + 4C[1 + 2 cos( 1
2 ak)], (59)

t (2)k = εa + 4A2 + 8A1 cos( 1
2 ak)], (60)

t (3)k = εa + 4A1[1 + cos( 1
2 ak)] + 4A2 cos( 1

2 ak), (61)

Vk = 4Vca sin( 1
4 ak). (62)

Six parameters in (59)–(62), namely εc = 3.16 eV, εa = 0.1 eV, Vca = 1.103 eV,
C = 0.015 eV, A1 = 0.13 eV and A2 = 0.15 eV, are the Slater–Koster parameters in the
notation used in [26], and a = 6.482 Å is the CdTe lattice constant. The parameters εc (εa)
are cation (anion) on-site energies, Vca is a single nearest-neighbour hopping parameter, while
C, A1, A2 are the second-neighbour parameters.

Hamiltonian (58) can be factorized giving one doubly degenerate energy band E2,3 = t3(k)
coming from py and pz orbitals, and two energy bands coming from the s–px interaction. The
spx Hamiltonian can be written in the form

Ĥsp =
(
�k −iVk

iVk −�k

)

+ �k

(
1 0
0 1

)

, (63)

where �k = 1
2 (t

(1)
k − t (2)k ) and �k = 1

2 (t
(1)
k + t (2)k ). The Hamiltonian (63) is very similar to

13
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Figure 6. Amplitude of ZB of tightly-bound electrons versus packet centre k0, calculated for three
widths of the wavepacket. Symbol rB denotes the Bohr radius. Material parameters correspond to
CdTe (see text).

that for nearly-free electrons of (11)–(13). The difference is that �k and Vk depend on the
absolute value of |k|. Also, the minimum band gap now occurs at k = 0. All eigen-energies
of the Hamiltonian Ĥsp have the periodicity of the reciprocal lattice. The quantum velocity
v̂ = ∂ Ĥsp/(∂ h̄k) does not commute with Ĥsp. To calculate r̂(t) we use the Heisenberg picture

r̂(t) = exp(iĤspt/h̄)r̂(0) exp(−iĤspt/h̄), (64)

which gives for the r̂(t) matrix

r̂11(t) =
(

Vk�
′
k Vk − Vk�k V ′

k

2E�
3

)

sin

(
2E�t

h̄

)

+
(
�k Vk V ′

k +�2
k�

′
k

E�
2h̄

)

t + v�t + r0. (65)

The component r̂22(t) is given by (65) with the changed signs of the first two terms. Further

r̂21(t) = �k V ′
k −�′

k Vk

2E�2

{[

cos

(
2E�t

h̄

)

− 1

]

− i
�

E�
sin

(
2E�t

h̄

)}

− i

(
V 2

k V ′
k + Vk�k�

′
k

h̄ E�2

)

t, (66)

and r12 = r∗
21. In (65) and (66) the prime denotes a differentiation with respect to k, and

v� = ∂�k/(∂ h̄k). Equations (65) and (66) are formally similar to (27) and (28), the main
difference is that now there appear terms related to the dependence of Vk on k.

We calculated the ZB oscillations of r̂11(t), as given by (65), using the Gaussian packet
of the form (30). The results are similar to those illustrated in figure 2. In figure 6 we show
the calculated amplitudes of the ZB as functions of the packet centre k0 for three widths of the
packet. Here the k0 dependence does not have a maximum at k0 = 0, because at this point the
interaction Vk between the bands vanishes (see (62)).

The presence of a strong periodic potential leads to two effects. First, the quadratic
dispersion relation Ek ∝ k2 for free electrons is replaced by a periodic one. Second, the
potential mixes s and px states to form two spx energy bands. This mixing leads to the ZB.
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7. Discussion

The main result of our work is that both in the case of nearly-free electrons and in the opposite
case of tightly-bound electrons we predict the ZB phenomenon. Comparing this result with the
previous work, in which ZB was predicted with the use of LCAO [15] and k ·p theory [16, 17],
we conclude that ZB is not due to a particular approach. In fact, the mathematics is quite similar
in all the above theories and, although we deal with non-relativistic electrons, it resembles the
formulation of relativistic quantum mechanics for free electrons in a vacuum. It is clear that the
fundamental underlying reason for the appearance of ZB in solids is the periodic potential of
the lattice. Particularly instructive in this respect are figures 2 and 3 of the present paper which
show that the amplitude of ZB is directly related to the effect of the periodic potential on the
free electron motion.

This result is not surprising. Without specifying any particular band model we deal
in solids with the periodic Hamiltonian Ĥ = p̂2/2m0 + V (r) and the electron velocity is
v̂ = ∂ Ĥ/∂p̂ = p̂/m0. It follows that dv̂/dt = 1/(ih̄)[v̂, Ĥ ] �= 0, i.e. the velocity is not
constant in time because of the periodic potential V (r). In this perspective the various models
mentioned above simply illustrate how this result comes about.

Clearly, the velocity does not commute with the Hamiltonian in the presence of other
potentials as well. However, the periodic potential is special because, due to the Bloch
theorem, the electrons can propagate in the perfect crystal without scattering and the quasi-
momentum h̄k is a good quantum number. For this reason it is possible to treat the
electrons as almost free particles and replace the influence of the periodic potential by an
effective electron mass. Still, as demonstrated in [16, 17] and the present paper, within
two-band models the basic non-commutativity of v̂ and Ĥ mentioned above remains in the
form of non-commuting 2 × 2 matrices with the resulting ZB. If the bands are completely
separated, we have Ĥeff = p̂2/2m∗ and v̂ = p̂/m∗, so that Ĥeff and v̂ commute and the
ZB disappears. However, there is a price to pay for this separation. It is shown in [16, 17]
and in the present paper that, once the electrons are described by a one-band equation (so
that their energy is completely specified), they should be treated as objects of a finite size.
The last effect is observable in the presence of an external potential due to appearance of
the so-called Darwin term for free relativistic electrons [2–4, 10] as well as semiconductor
electrons [16].

As emphasized throughout our paper (see also [16, 17]), in the two-band model the ZB
of non-relativistic electrons in solids is in close analogy to the ZB of relativistic electrons
in a vacuum, as first proposed by Schrödinger. The Hamiltonians for the two cases are very
similar, and in both systems the ZB results from an interference of electron states corresponding
to positive and negative electron energies [2–4]. If, with the use of Foldy–Wouthuysen
transformation, the states of positive and negative energies are separated in the Hamiltonian
and in the wavefunctions, ZB does not occur because the positive energy state (say) has
nothing to interfere with. This corresponds to the separation of bands mentioned above and
the conclusions of the two lines of reasoning agree.

Thus we are confronted with the following choice: (1) we use a two-band description, the
electrons are point-like particles and they experience the ZB; (2) we use a one-band description,
the electrons do not experience the ZB but they are characterized by a quantum radius of the
size equal to the ZB amplitude.

The last point is illustrated by (57) describing the average ‘smearing’ of the transformed
delta function. It is equal to the amplitude of ZB given by (27). One can say that the separation
of energy bands by the Foldy–Wouthuysen transformation is equivalent to a certain averaging
of the ZB motion.

15



J. Phys.: Condens. Matter 19 (2007) 136219 T M Rusin and W Zawadzki

It was observed [11] that, since the ZB had been predicted for plane Dirac waves, it is not
quite clear what the trembling motion means for an electron uniformly distributed in space.
In this connection it is important that the amplitude does not vary much when the electron is
represented by a wavepacket localized in real space (see figure 3).

Passing to more specific points of our treatment, we emphasize again how little we had
to assume to derive the ZB in the case of nearly-free electrons—it was enough to perturb
the free electron motion by a periodic potential. This case has certain particularities. In the
‘typical’ two-band situations, both in a vacuum [2, 4, 10] and in solids [16, 17], there exists
a maximum velocity in the system which plays an important role in the theory. In case of
nearly-free electrons there is no maximum velocity since the perturbed energy branches tend
asymptotically to the free electron parabola E = h̄2k2/2m0 (see figure 1). This is reflected in
the velocity v̂k, while the velocity v̂� has the typical ‘two-band’ behaviour and is responsible
for the ZB. In fact, the velocity v̂� has the maximum value. It is equal to (h̄/m0)(π/a)
(see our eigen-value considerations after (15)). For a = 5.6 Å the maximum velocity is
6.4 × 107 cm s−1, which should be compared with u = 1.3 × 108 cm s−1 obtained from the
k · p theory for GaAs and other III–V compounds [16]. Again, our simple model gives quite
a reasonable estimation. In the nearly-free electron model λZ is proportional to 1/Vq ∼ 1/Eg

(see (29)), which agrees with the k · p approach [16], where λZ ∼ 1/m∗
0 ∼ 1/Eg. In narrow

gap materials λZ can be as large as tens of angstroms.
As far as the phenomenon of ZB is concerned, the behaviour of nearly-free and tightly-

bound electrons is quite similar. The main difference comes from the fact that in the nearly-
free case the Fourier coefficients of the periodic potential do not depend on the wavevector k,
whereas in the tightly-bound case they go to zero for vanishing k. As a result, in the first case
(see figure 3) the ZB amplitude is highest for the kz0 corresponding to the minimum energy
gap, while in the second case (see figure 6) the maximum amplitude is shifted with respect
to the minimum gap. For the tightly-bound case the electrons in t (3)k bands (see (61)) would
not exhibit ZB, but we do not insist on this point since these two bands are not realistically
described by the model.

In order to illustrate that, after the Foldy–Wouthuysen transformation has been carried
out, the former Dirac delta function is ‘smeared’ into the kernel K+

11 of (45), we not only
calculate it numerically (see figure 5) but also calculate its second moment M+

2 (see (48))
and the sum rule S+

2 of (57). The second moment has the advantage of using the standard
quantum mechanical probability distribution (K +

11)
† K +

11 (see (47)). Its disadvantage is that this
probability distribution is normalized to the Dirac delta function and not to a number. As to the
sum rules using the single K +

11 function, their advantage is that both the normalization (56) and
the sum rule S+

2 (57) are numbers, and (57) can be simply interpreted as a square of ‘smearing’
(this procedure was used for free relativistic electrons by Rose [2]). The disadvantage of using
the single K +

11 is that we have to separate out its ‘smooth’ part (see (49)). The oscillatory part
exp(−iqzζ ) would not appear if we considered the nearly-free electron gap at kz = 0.

Methods for observing the ZB should clearly be adjusted to the investigated materials,
but it seems that an appropriate tool would be scanning probe microscopy which can produce
images of coherent electron flow [27, 28]. This technique uses a sharp mobile tip which can
sense the electron charge. If one used dilute magnetic semiconductors of the CdMnTe type [26]
one could employ the magnetic effects caused by electron oscillations.

The second category of possible observable effects is related to the problem of what
happens when electrons are confined to dimensions smaller than λZ . In relativistic quantum
mechanics one finds statements that a measurement of the position of a particle, if carried out
with greater precision than the Compton wavelength, would lead to pair production [8]. It is
clear, however, that the pairs created this way can only be virtual, otherwise their recombination
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would lead to the production of energy out of nothing. The virtual carriers could be observed
in screening or in magnetism. An alternative point of view states that a stiff confinement is
equivalent to an infinite potential well having the width�r < λZ , and the electrons will simply
occupy the lowest energy level in such a well. It is, however, certain that if an electron is
confined to dimensions �r < λZ , its energy (or its uncertainty) is of the order of the gap Eg

between the positive and negative electron energies, which means that a one-band description
is not adequate. We are then back to the two-band model, which was our starting point.

There remain many unanswered questions concerning the trembling motion but it appears
that in crystalline solids it represents the rule rather than the exception. According to the theory,
the ZB in semiconductors has decisive advantages over the corresponding effect in a vacuum.
Thus an experimental detection of the trembling motion in solids may be possible in the near
future.

8. Summary

We considered theoretically non-relativistic nearly-free electrons in solids for which the
periodic potential of the lattice may be treated as a weak perturbation on the free electron
motion. Using the two-band model, we showed that electrons experience the trembling motion
(Zitterbewegung, ZB) in the absence of external fields, similar to that for free relativistic
electrons in vacuum. The frequency of the ZB and its amplitude were derived. The frequency
is ω ≈ Eg/h̄ where Eg is the energy gap between the two bands. The amplitude λZ depends
on the strength of the periodic potential and the lattice period. For typical parameters λZ can
be of the order of 10–100 Å, that is 104–105 times larger than in a vacuum. The trembling
motion is also considered for nearly-free electrons represented by wavepackets; it is shown that
the amplitude is not strongly dependent on the packet’s width. The Foldy–Wouthuysen type
of unitary transformation, known from relativistic quantum mechanics, is used to separate the
energy bands. The consequences of the Foldy–Wouthuysen transformation are investigated.
It is demonstrated that if one uses a one-band description the electrons do not experience
the trembling motion but they should be treated as particles having size λZ . Tightly-bound
electrons are considered as well to provide the opposite case to nearly-free electrons. Within
the two-band model the trembling motion is obtained, demonstrating that in this case as well
the ZB phenomenon is not related to a specific theoretical approach. It is concluded that the
trembling motion is directly related to the effect of the periodic potential on the electron and,
as such, it should occur in many situations in solids.
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Appendix

First, we prove some properties of Ĥ� of (12). The eigen-values of Ĥ� are ±E�. If |1〉 and
|2〉 are eigen-states of Ĥ�, then P̂i = |i〉〈i |, (i = 1, 2) are two projection operators. It follows
that P̂1 + P̂2 = 1 and Ĥ� = E�(P̂1 − P̂2). Accordingly

(P̂1 − P̂2) = Ĥ�

E�
. (A.1)
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Since Ĥ −1
� = (1/E�)(P̂1 − P̂2), we have Ĥ −1

� = Ĥ�/E�2. Then Ĥ −2
� = Ĥ −1

� Ĥ −1
� = 1/E�2

because Ĥ 2
� = E�2. For a real b there is

exp(iĤ�b) = exp(iE�b)P̂1 + exp(−iE�b)P̂2. (A.2)

Because exp(±iE�b) = cos(E�b)± i sin(E�b) we have

exp(iĤ�b) = [cos(E�b)+ i sin(E�b)]P̂1 + [cos(E�b)− i sin(E�b)]P̂2. (A.3)

Grouping the terms with cosine and sine functions we get

exp(iĤ�b) = cos(E�b)(P̂1 + P̂2)+ i sin(E�b)(P̂1 − P̂2)

= cos(E�b)+ i
Ĥ�

E�
sin(E�b). (A.4)

This identity is used in (25).
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